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UIt is typically very difficult to obtain waiting-time distribution

functions for non-Markovian, general single-server queues. It has long been

recognized that virtually any probability density (such as for service times)

can be approximated quite accurately by a linear combination of exponential
.-

density functions. Fortunately, when such forms can be assumed to describe

-" interarrival and service times, classical results from the theory of queues

permit the solution of the waiting-time problem for the general queue.

However, there have been no good computer-based algorithms available until

recently for determining appropriate mixed exponential densities to fit data

*or closely approximate another non-standard density. The subject of this work

"* then is the adaptation of a special nonlinear optimization routine for

generalized mixture estimation and its use in calculating very accurate

approximations for the delay distribution of any general single-server queue.
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C .,I. INTRODUCTION

U In a recent paper, Fredericks (1982) offered a class of approximations

for the GI/G/l stationary waiting-time distribution function (CDF), W (t).
q

The main idea there was to assume a specific form for W (t) and then to use
q

the Lindley integral equation to obtain estimates of the parameters.

The primary form used for the approximant was the exponential

t - W (t) = 1 - Ce~at
Woq

"'A and then numerous ways were documented for the estimation of C and a. How-

ever, presetting the form of W (t) leads to complications when more complex:,i q

functional forms are tried, and this approach does not generally portray a

waiting-time CDF in an accurate way over its full range. Fredericks also

mentioned the mixed exponential as another possible form for W (t) in light of~q

its common appearance as a waiting-time distribution. This gave a more

precise approximation, but other problems then surfaced.

* .However, there is an entirely different way to look at the problem which

has some precedence in the literature, and which often provides both a special

insight into the underlying queue mechanisms and a most accurate way of

assessing the waiting times. We suggest looking instead at the interarrival

*: * and service-time distributions defining the GI/G/l as the candidates for the

approximation, such that the final form of Wq (t) is a member of a very

1By mixed exponential, we mean that the complementary CDF 1-W q(t) may be

owritten as a linear combination of exponential functions with possibly complex
. powers. In its most general form, the (possibly complex) linear combination

J. need not be convex and the constants could be mixed positive and negative.
And, of course, the exponents should have negative real parts. See Dehon and
Latouche (1982) for an expanded and up-to-date discussion of this class of
distribution functions.
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comprehensive family of CDFs, namely, the mixed exponentials. So we present a

way to approximate which guarantees that the waits turn out to be mixed

exponentially distributed.

. The primary motivation for our alternative approach is previous work of

Smith (1953), and Marchal and Harris (1976). The major relevant result of

Smith was his Theorem 4, in which some quite general sufficient conditions

were presented for the GI/G/l waiting times to have a mixed exponential

distribution. Marchal and Harris built on this result and some others of

Smith to offer a relatively simple mixed-exponential approximation of W (t)
4 q

derived by fitting the difference of the service and interarrival time random

variables by a difference of two Erlang variables.
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II. NOTATION AND BACKGROUND MATERIAL

The fundamental results for the GI/G/l may be found, for example, in

Gross and Harris (1974), Chapter 6. It was noted there that the GI/G/l

problem can be greatly simplified if it may be assumed that both interarrival

Sand service distributions are generalized Erlangs (GE) expressed as con-

*volutions of independent and not-necessarily-identical exponential random

' .' variables. When the means of such exponentials are allowed to come in conju-

gate pairs (so that their Laplace-Stieltjes transforms are inverse poly-

* : nomials), Smith calls the family K (with n the degree of the defining poly-

nomial). Other authors (e.g., Cohen, 1982) define K as the class of dis-

tributions whose transforms are rational functions (clearly including the

inverse polynomials); but we shall instead call these R (with n the degree of
n

the denominator's polynomial). The K class includes all regular Erlangs, but
n

not all mixed exponentials and mixed Erlangs, which are however members of R .

We also mention the generalized phase-type distributions (PH) popularized by

- / Neuts and others (see Neuts, 1981), which have rational transforms as well,

though not necessarily of the inverse polynomial form. Thus we may

symbolically represent the relationship of those respective families as

V'." GECKnC R and PHC R'. -. n n n"

assumption (i.e., that the queue is K m/K n/1), itNow, under a double Kn , ,

turns out that the delay CDF is (for example, see Gross and Harris)

n z.t
SW(t) = 1 + I k.e 1q i= 1

where the {k.) and (z.) would be determined in the usual way (as in Gross and

Harris). The (ki) are arbitrary in sign, while the (zi} have negative real

parts. A completely parallel result exists for distributions in R n~n

# 
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2. ' Importantly, Smith also showed that a comparable result follows even for

arbitrary interarrival times. That is, the GI/Kn /1 and GI/Rn /1 queues have

VA. mixed exponential waits independent of the form of GI. And therein lies the

key to our approximation method: the interarrival and service CDFs are the

functions of concern.

So our approach is built around the approximation of the service dis-

tribution by a member of either the class K or R. Since R is the more
n n n

general class and includes Kn, we focus on selecting from amongst its members.

More precisely, we work with a subset of the class R made up of those
."n

rational functions whose denominators have real roots, and call this class GH

2for "generalized hyperexponential."

It is most important to recognize that GH is a very complete set of

potential approximants even without the use of complex scale parameters. The

most critical characterization of this coverage is the fact that all functions

* in L2 (O,-) can be approximated arbitrarily closely by a finite linear com-

- t + 3
- .. bination of functions of the form e , (For example, see Naylor and

Sell, 1971, for a discussion of this and related problems on the Hilbert space

of square integrable functions.)

So the distribution selection problem is that of describing the proba-

bility structure of the service times by a density of the form

, K -i t

*. . b(t) = Z iOi e
i1l

' 2Note that the class GHGE and that GHC PH.

o Indeed, the classes, GH, PH and Rn are each dense in the set of all CDFs

on the nonnegative reals.
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either from data or as an approximation to an actual available density

function whose form is awkward. If we indeed have raw data, then our problem

is just one of parameter estimation. Otherwise, we have a curve fitting prob-

C. .* lem, which in turn can be converted to an estimation problem by picking a

large number of the function's points and then proceeding with the maximum-

likelihood estimation (MLE). The recommended approach for this selection is

based on a nonlinear optimization routine previously developed for the MLE of

mixed Weibull parameters. It is presented in the next section.

too
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III. METHOD FOR SERVICE DENSITY APPROXIMATION

The numerical procedure for estimation has been built up from previous

work on exponential and Weibull mixtures. To illustrate, let us assume that

the data sampling is complete so that all service times are fully observed.

In the event that there are incomplete data observations, the algorithm is

easily altered.

Maximum-likelihood estimation is the method selected mainly because,

under fairly general conditions, it enjoys the important limiting statistical

- properties of efficiency, normality, and unbiasedness. Furthermore, the MLEs

are consistent, invariant, and are functions of sufficient statistics if they

U exist. When sufficiency and unbiasedness both hold, the MLEs are also of

' .minimum variance.

A first key observation is that it is not possible to obtain explicit

formulas for the maximum-likelihood estimators of parameters involved in mixed

exponential densities by taking the partial derivatives and equating them to

zero. Hence we must resort to other optimization methods and numerical

techniques. Furthermore, we need to take into account a set of constraints in
addition to the objective function. The mixing proportions and scale

" parameters must satisfy some simple linear relationships and there may exist

other constraints related to the sub-population parameters. Note that the

Ni constraints are generally of a linear type; hence the problem can be described

as a mathematical program with a nonlinear objective function and linear

constraints.

A. The target criterion function in the maximum-likelihood problem is the

-joint density function for a random sample from the (mixed) population

6governed by b(t). As is c ,mmon, it is much easier in this situation to work

6
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with the logarithm of the likelihood function. Thus if we write the likeli-

* hood for the random sample ti, ... ,t N as

N N K t
. -. L(a) = H b(t.;a) - E .0 e (5)

i=l i=l j=l J

where a is the vector of parameters (which may include K), then its logarithm

is expressed as

N
f (a) = Z ln b(ti;a). (6)

The general MLE problem for the mixture may then be formulated as the non-
-.5 .. "

linear constrained optimization problem:

max f(a)

subject to

Sa s = (alET. = 1;0 _ 0). (7)

3 3J
Under the standard mixed-exponential regime, all T. > 0, and 0. would be

real and greater than 0. The most efficient algorithm available for the

solution of this problem is due to the joint efforts of Kaylan (1978) and

Kaylan and Harris (1981), and Mandelbaum (1982) and Mandelbaum and Harris

(1982). It is an iterative numerical procedure built around Newton's method

with additional use of second partial derivatives to speed up convergence

whenever necessary.

Because the mixing parameters may be negative in our queueing problem,
•."

the Kaylan/Plandelbaum/Harris algorithm has been carefully altered. The basic

approach is similar, except that now the number of mixing variables has been
4-

.% .:[ doubled. Since it is preferable to optimize over nonnegative variables, we

thus write T. as the difference between its positive and negative parts.

There were two major changes necessary in the algorithm. First, additional

7
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code had to be added to make sure that the density function b(t) did not

become negative. A second alteration had to be made to prevent the mixing

parameters {I.} from drifting too far out along the real line in either°..; 1

direction.
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IV. ILLUSTRATIVE EXAMPLE

To show how our proposed method would work, the following test problem is

offered. It is patterned somewhat after an example in Gross and Harris

(pp. 300-301) and is of the M/G/l type. Interarrivals are assumed to have

. mean 2, while a set of 50 service times has been generated randomly according

to an Erlang(2) with mean 1. These numbers are (to two decimal places):

.90, 2.14, 1.33, .52, .72, .06, .49, .53, 1.10, .63

.31, 1.47, .91, .26, .49, .97, .24, 2.99, 2.60, 1.11
1.99, .41, 31, 1.58, 1.42, .84, .11, .54, 1.27, 2.05
.. .51, .91, 1.78, 1.69, .78, .64, 1.62, 1.96, .93, .41

1.70, .73, .98, .71, .73, .44, 1.27, .92, .71, .78

J! uThe algorithm of the previous section was then applied to the data and

the resultant generalized mixed exponential turned out to be (with its

parameters rounded off for simplicity)

-4t -3t -2t

B(t) = 1 - e +4e -4e

The next step is to substitute B(t) into the GI/G/l waiting-time
N-

equations as those presented earlier in Gross and Harris. It follows that

W (t) may be written as~q

-8779t -(3.811+.5335i)t -(3.811-.5335i)t'-W (t)=I+ ke~ .87793

q 1 2 +

In order to guarantee real values for W (t), k must be the complex

conjugate of k The result can then be simplified to

(t)= + kle 8779t -(3.811+.5335i)t - -(3.811- .5335i)t

Wh q ()=1+k1 e+k 2e+2e

When the work of Smith is applied and the corresponding residues obtained, we

find that k I = -.5141 and k = 02884 + .03575i. The final expression for the
1 2

stationary waiting-time CDF is thus

W-(t) = 1 - .5141e .8779t + e 3.811t [.05768 cos .5335t .07150 sin .5335t].Wq

4. * 9
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. .. V. CONCLUDING REMARKS

U It should be noted that several other methods are available in the

literature which provide similar approximating forms for the service-time

* ° distribution. In particular, Luchak (1956) and Wishart (1959) expanded the

-; aD Stieltjes transform B*(s) in a Laurent series about (-±), and then truncated

after k terms to give

k
B*(s) = E c (I+s/u) " m

m=l m

' " (This corresponds to approximating B(t) as a mixture of Erlangs with the same

scale.) But these {c ) are not likely to sum to one, and thus the truncation
.. J m

B is not a true CDF. We may try instead to match moments and use boundary

conditions for estimating V and the {cm }. Unfortunately, the latter estimates
m

may not be the same as those from the Laurent expansion and would not neces-

i sarily possess any of the major properties typically desired. Observe that

such Laurent forms are indeed members of the class R
n

In closing now, we believe it important to view this work as a total

u package: numerical, statistical and mathematical. We see our approach as a

unification of some of the most fundamental results on the GI/G/l queue,

particularly building on the early and basic work of Smith. This and related

work which have followed are all put in total perspective by Cohen. The

numerical portions of this study began with the optimization procedure and

ultimately led to the derivation of the stationary delay CDF. But we really

cannot separate this from the attempt to find quality statistical estimators.

By virtue of the fact that the distribution selection is performed by MLE, it

is clear that this sort of complete modeling effort is very much data oriented

*and therefore a potentially powerful tool for the applied queueing analyst.

10
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- Finally, the extreme simplicity of the mathematical solution to the waiting-

* time problem should be reemphaslzed.
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